
Supplementary Materials: Pathology 

METHODS 

We analyzed material from 230 patients (Supplementary Table 1) who provided informed 
consent. Tumour and matched normal samples from patients with previously untreated lung 
adenocarcinoma were selected for analysis according to tumour percentage, availability of 
clinical data and sufficient nucleic acid as described previously1. The Biospecimen Core 
Resource began by reviewing 678 submitted cases.  120 cases were excluded by pathological 
assessment (e.g. purity < 60% or necrosis levels > 20%). 195 additional cases did not meet 
molecular metrics (e.g. RIN<7 or low yield).  Six cases were excluded due to discordant 
tumour/normal genotypes.  

We then classified the 289 remaining cases using the 2004 WHO and the 2011 
IASLC/ATS/ERS lung adenocarcinoma classification criteria2. Neuroendocrine (n=15) and 
indeterminate (n=44) histologies were excluded. The remaining 230 samples represented the 
major histologic types of lung adenocarcinoma: 5% lepidic, 33% acinar, 9% papillary, 14% 
micropapillary, 25% solid, 4% invasive mucinous, 0.4% colloid and 8% unclassifiable 
adenocarcinoma (Supplementary Figure 1)2, 3.  Due to artifacts mostly caused by frozen section 
material, 19 cases were regarded as adenocarcinoma, but histologic subtyping could not be 
performed.  Tumors were classified according to architectural grade as proposed by Yoshizawa 
A, et al.4.  

The majority of the tumours analyzed were stage I or II (n=174); the remainder were 
stage III or IV (n=56).  Germline DNA was obtained from peripheral blood (n=133), from 
adjacent histologically normal tissue resected at surgery (n= 65), or from both (n=32).  
Supplementary Table 2 summarizes demographic data.  Median follow-up was 19 months, and 
163 patients were alive at the time of last follow-up.  Eighty-one percent of patients reported 
past or present smoking (current: n=45, former: n=142, never-smoker: n=33, not known: n=10). 
DNA, RNA and protein were extracted from specimens and quality-control assessments were 
performed as described previously1.  Supplementary Table 3 summarizes molecular estimates 
of tumour cellularity5.	  

Histological assessment, molecular quality control, and genotype matching for all samples were 
performed at the Biospecimen Core Resource (BCR) as previously described6. Aperio© 
scanned hematoxylin and eosin stained slides were reviewed from 289 tumors according to the 
2004 WHO classification and the 2011 IASLC/ATS/ERS lung adenocarcinoma classification 
criteria2. Tumors that were unclassifiable (n=44) or suspected to be large cell neuroendocrine 
carcinoma (n=15) were excluded resulting in 230 cases that were classified as 
adenocarcinoma. Whenever possible, comprehensive histologic subtyping was performed to 
determine a predominant subtype. In 161 (70%) of cases, the H&E slide was from a 
representative section of formalin fixed paraffin embedded tissue while in the remaining 69 
(30%) cases, the only slide available for review was from the tissue processed for frozen 
section. Most of the tumors that were difficult to classify were in the cases were only frozen 
section material was available for review.   



 For the purpose of histology molecular correlations, the one case of colloid 
adenocarcinoma was grouped with unclassified adenocarcinoma.  Histologic subtypes were 
analyzed comparing tumors classified in a specific subtype versus all other histologic subtypes. 
  

RESULTS 
 

Supplementary Figure 1: Histologic patterns of lung adenocarcinoma: A: lepidic pattern with 
atypical pneumocytes growing along alveolar walls; B: acinar pattern with tumor cells forming 
glands and tubules; C: papillary pattern with tumor cells growing in papillae along the surface of 
fibrovascular cores; D: micropapillary pattern with tumor cells growing in papillae lacking 
fibrovascular cores; E: solid pattern with diffuse sheets of tumor cells lacking any architectural 
patterns; F: invasive mucinous adenocarcinoma consists of tumor cells with abundant 
intracytoplasmic mucin, mostly in the apical cytoplasm with basally oriented nuclei.  
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DNA sequencing, validation and data processing 
 

METHODS 
 
Whole exome sequencing was performed as previously described1. Briefly, 0.5-3 micrograms of 
DNA from each sample was used for library preparation, which included shearing and ligation of 
sequencing adaptors. Exome capture was performed using the Agilent SureSelect Human All 
Exon 50Mb kit. Captured DNA was sequenced using the Illumina HiSeq platform, and paired-
end sequencing reads were generated for each sample. Initial alignment and quality control 
were performed using the Picard and Firehose pipelines at the Broad Institute2. Picard 
generates a single BAM file for each sample that includes reads, calibrated quantities, and 
alignments to the genome. Firehose represents a set of tools for analyzing sequencing data 
from tumor and matched normal DNA. The pipeline uses GenePattern16 as its execution engine, 
and performs quality control, local realignment, mutation calling using MuTect3, small insertion 
and deletion identification using Indelocator2, 4 rearrangement detection, and coverage 
calculations, among other analyses. Complete details of this pipeline can be found in Stransky 
et al.1. 
 
Mutation Significance Analysis 
 
Mutation significance was performed using the MutSig2CV algorithm5. In brief, this algorithm 
takes into account recurrence of mutations, nucleotide context, gene-expression, replication 
time, and somatic background mutation rate. For this analysis, the cohort of TCGA samples 
(n=230) was combined with a previously published cohort of lung adenocarcinomas with 
corresponding WES data (n=182)6. Genes with a Bonferroni-corrected p-value less than 0.025 
were deemed significant. See Figure 1A for the co-mutation plot for the TCGA samples (n=230), 
Supplementary Figure 2 for the co-mutation plot for all samples used in the analysis (n=412) 
and Supplementary Table 4 for a list of all genes and their respective p-values. For the 
significant genes, we applied a Fisher’s exact test to determine if the proportions of mutated 
samples differed between Transversion-High and Transversion-Low or male and female sample 
subsets. These p-values were corrected using the Benjamini-Hochberg multiple test correction 
method. 
 
Mutation and indel validation 
 
Using novel baits, we used hybrid captured to resequence the exons of 70 candidate genes to 
an average depth of 501 reads for 164 of the samples used in the original cohort. Validation 
rates were calculated as previously described1,	   6 and are shown in Supplementary Figure 3 
and Supplementary Table 5. Briefly, we used a binomial model to first determine the minimum 
alternate read count required for validation based on noise in the normal. We then adopted a 
second binomial to calculate the power to detect a mutation or indel and analyzed only those 
sites whose power exceeded 95%. This model takes into consideration the allele fraction of the 
event, the depth of coverage, and the expected error rate at that site.  

  



 
Supplementary Figure 2: Co-mutation plot for whole exome sequencing analysis of 412 
lung adenocarcinomas. Significant genes were identified using the MutSig2CV algorithm 
(Bonferroni-corrected p < 0.025) and are ranked in order of decreasing significance. See Figure 
1A for a co-mutation plot of the 230 TCGA samples. 
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Supplementary Figure 3: Validation rates for SNPs and Indels. (A) Considering sites with a 
95% power of detection, the validation rate was 99% and 100% for SNPs and indels, 
respectively. Additionally, 235 mutations and 9 indels were identified de novo in the validation 
data suggesting false negative rates of 23% and 17%, respectively. The majority of these 
additional mutations (64%) lacked adequate coverage for detection in the whole exome 
sequencing data (power < 95%). (B) Samples with at least one additional mutation identified 
(n=107) did not have significantly lower tumor purity than samples that had no additional 
mutations identified (p=0.31; Wilcoxon rank-sum test). 
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Supplementary Materials: Transversion High/Low Analysis 
 

METHODS 
230 TCGA samples were merged with 183 lung adenocarcinoma samples from a 
previously published study1. Mutation spectrum for each sample was calculated as the 
percentage of each of six possible single nucleotide changes (AT>CG, AT>GC, AT>TA, 
GC>AT, GC>CG, GC>TA) among all single nucleotide substitutions. A training set was 
established with transversion low (TL) samples being tumors from lifelong never-
smokers and transversion high (TH) samples as tumors from patients with 60 or more 
pack years of smoking history. A linear discriminant analysis based on GC>AT 
frequency, GC>TA frequency, and total mutation count (using the R MASS library2) was 
performed based on this training set to classify all samples as belonging to either the TH 
or TL categories. 

RESULTS 
Among 413 total samples, 144 were classified as transversion low and 269 as 
transversion high. For 59 lifelong never-smokers in the merged sample set, 54 (92%) 
were classified as TL. For 163 current or heavy smokers, 137 (84%) were classified as 
TH. Significantly mutated genes were calculated separately for each sample subset with 
selected genes shown in Figure 1B. 
 
Supplementary Figure 4: Transversion frequency correlates with smoking history. A) 
Distribution of C>A transversion frequency among lung adenocarcinoma samples 
showing two peaks. B) Total mutation count and C>A transversion frequency is 
correlated, R2=0.30. C) C>A transversion frequency and C>T transition frequency are 
inversely correlated (R2=0.75). Transversion High and Transversion Low classification 
denoted by point shape, annotated clinical smoking history denoted by point color 
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Supplementary Materials: Copy Number Analysis & low pass Whole Genome Sequencing 

METHODS 

SNP Array-Based Copy Number Analysis: DNA from each tumor or germline-derived sample 
was hybridized to the Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis 
Platform of the Broad Institute1. From raw .CEL files, Birdseed was used to infer a preliminary 
copy-number at each probe locus2.   For each tumor, genome-wide copy number estimates 
were refined using tangent normalization, in which tumor signal intensities are divided by signal 
intensities from the linear combination of all normal samples that are most similar to the tumor3 
(and Tabak B and Beroukhim R. Manuscript in preparation).  This linear combination of normal 
samples tends to match the noise profile of the tumor better than any set of individual normal 
samples, thereby reducing the contribution of noise to the final copy-number profile.  Individual 
copy-number estimates then undergo segmentation using Circular Binary Segmentation4. As 
part of this process of copy-number assessment and segmentation, regions corresponding to 
germline copy-number alterations were removed by applying filters generated from either the 
TCGA germline samples from the ovarian cancer analysis or from samples from this collection. 
Segmented copy number profiles for tumor and matched control DNAs were analyzed using 
Ziggurat Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the 
set of inferred copy number changes underlying each segmented copy number profile4.  
Analysis of broad copy number alterations was then conducted as previously described2.  
Significant focal copy number alterations were identified from segmented data using GISTIC 
2.05.  Allelic copy number, and purity and ploidy estimates were calculated using the 
ABSOLUTE algorithm6. 

RESULTS 

Supplementary Figure 5: Copy Number Aberrations in Lung Adenocarcinoma.  (A) Statistically 
significant focally amplified (red) and deleted (blue) regions plotted along the genome.  
Annotated regions are FDR<0.05.  (B) Arm level copy number changes with red representing 
arm level gains and blue representing arm level losses.  



 

 

 

WGS (low-pass) Based Analysis of Structural Variations 

METHODS 

From 500 to 700 ng of each sample gDNA were sheared using Covaris E220 to about 250 bp 
fragments, than converted to a pair-end Illumina library using KAPA Bio kits with Caliper 
(PerkinElmer) robotic NGS Suite according to manufacturers’ protocols.  All libraries were 
sequenced by HiSeq2000 using one sample, one lane, pair-end 2 x 51bp setup. Tumor and its 
matching normal were usually loaded to the same flowcell.  Average sequence coverage was 
found to be 5.6X, read quality 37.3, 92.13% reads mapped.  Raw data were converted to 
FASTQ format then were fed to BWA alignment software to generate .bam files. 
 
Identification of Copy Number Variants.  To characterize somatic copy number alterations in 
the tumor genome, we applied a new algorithm called BIC-seq7 to low-coverage whole-genome 
sequencing data. First, we counted the uniquely aligned reads in fixed-size, non-overlapping 
windows along the genome. Given these bins with read counts for tumor and matched normal 
genomes, BIC-seq attempts to iteratively combine neighboring bins with similar copy numbers.  
Whether the two neighboring bins should be merged is based on Bayesian Information Criteria 
(BIC), a statistical criterion measuring both fitness and complexity of a statistical model.  
Segmentation stops when no merging of windows improves BIC, and the boundaries of the 
windows are reported as a final set of copy number breakpoints. Segments with copy ratio 
difference smaller than 0.1 (log2 scale) between tumor and normal genomes were merged in 
the post-processing step to avoid excessive refinement of altered regions with high read counts. 
 
Discovery of Rearrangements with BreakDancer and MEERKAT.  Structural variation 
detection is performed with the program BreakDancer on a .bam file constructed from HiSeq 
sequencing of each tumor pair8. The first step requires a configuration file of each bam file for 
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each tumor pair with the bam2cfg.pl perl module of the program.  After the configuration file, the 
perl module BreakDancerMax.pl is run on the configuration file in order to call structural variants 
in the tumor and control files. Each tumor structural variant file is filtered with its matched normal 
to remove any false positives. Structural variations are also detected by Meerkat9, which 
requires at least two discordant read pairs supporting one event and at least one read covering 
the breakpoint junction. Each variant detected from tumor genome is filtered with all normal 
genomes to remove germline events. The final calls are also filtered out if both breakpoints fall 
into simple repeats or satellite repeats.  
 
Validation of Rearrangement Hits. We attempted to validate the translocations using two 
different approaches.  MEERKAT determines translocations on the basis of discordant reads as 
well as reads that span the translocation junction (split reads).  We also attempted to validate 
several translocations by attempting to PCR amplify the junctions of the translocation and 
sequencing the products.  Based on these two approaches we validated 25/46 (54%) of 
translocations.  Therefore, it is possible that the false discovery is 46 percent.  
 

RESULTS 

Supplementary Figure 6: Chromothripsis in LUAD 05-5715. A. Circos diagram depicting the 
region of Chromosome 1 that suffered chromothripsis. Inner tracks display copy number 
histograms for each chromosome, amplifications (red) and deletions (blue), and structural 
variation links are purple. Some genes annotated on chromosome 1 include SETDB1, 
RABGAP1L, and AKT3. Part B. Chromothripsis allele graphs display alternating copy states on 
Allele 1 (top panel) and no copy state alteration on Allele 2 (bottom panel). 
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Supplementary Materials: RNA Sequencing 

METHODS 

Expression quantification 

RNA was extracted, prepared into mRNA libraries, and sequenced by Illumina HiSeq resulting 
in paired 50nt reads, and subjected to quality control as previously described1.  RNA reads were 
aligned to the hg19 genome assembly using Mapsplice.2  Gene expression was quantified for 
the transcript models corresponding to the TCGA GAF2.13, using RSEM4 and normalized 
within-sample to a fixed upper quartile.  For further details on this processing, refer to 
Description file at the DCC data portal under the V2_MapSpliceRSEM workflow.5  For gene 
level analyses, expression values of zero were set to the overall minimum value, and all data 
were log2 transformed.6 

For splicing analyses in Fig 2A, exonic RPKM values (described in 5) were utilized.  For a gene, 
exons were standardized to z-scores within a sample and then across exons.   
 
Fusion transcript detection 

RNA fusion events were automatically detected by MapSplice as previously described1,7.  A 
secondary search for fusion events was performed for the genes RET, ROS1, and ALK.  This 
secondary search, by SigFuge (8 and 
http://bioconductor.org/packages/release/bioc/html/SigFuge.html), consisted of clustering tumor 
specimens by base-wise expression profiles, separately for each gene, such that highly 
discordant expression classes indicative of fusion events might be found.  This process 
confirmed the automatic detections of MapSplice and additionally made one further detection of 
a RET fusion in TCGA-75-6203. Manual analysis confirmed the presence of aligned RNA reads 
bridging this locus and its upstream partner CCDC6. 

RNA-seq mutation confirmation 

Each tumor’s sequence mutations detected by DNA whole exome sequencing (DNA-WES) 
were interrogated for confirmation in their RNA sequencing (RNA-seq) using the tool UNCeqR (9 
and http://lbg.med.unc.edu/tools/unceqr/) as previously described1. First, DNA-WES mutation 
positions having a minimum of 1X RNA depth were evaluated for the presence of at least one 
read confirming the variant allele (Supplementary Figure 7A - top panel).  With this definition of 
expression, 64% of mutation loci were expressed, 40% were confirmed, and 62% were 
confirmed if the locus was expressed, on average among samples.  Then, DNA-WES mutation 
positions having a minimum of 5X RNA depth were evaluated for the presence of at least one 
confirming read with the variant allele (Supplementary Figure 7A – middle panel).  With this 
definition of expression, 49% of mutation loci were expressed, 36% were confirmed, and 73% 
were confirmed if the locus was expressed, on average among samples.  As expected, the 
confirmation rate is greater among positions with minimum 5X coverage because there were 
more RNA reads and greater statistical power to possibly confirm the variant allele than there 
was in the positions with minimum 1X coverage.  Overall, these results demonstrate a high, 



independent validation rate of DNA-WES mutations by RNA-seq conditioned on moderate RNA 
expression.   

Across all specimens, mutation validation rates by RNA-seq were not widely different among 
mutations with different predicted protein coding ramifications (Supplementary Figure 7A – 
bottom panel).  DNA mutations having non-sense, mis-sense and silent predicted protein coding 
effects displayed 37%, 41%, and 40% validation rates by RNA-seq, overall irrespective of locus 
expression.  Limiting to mutation sites with at least 5X RNA read depth, non-sense, mis-sense 
and silent mutations had 67%, 78%, and 76% respective validation rates.  These results support 
that RNA-seq is effective at validating DNA mutations of many varieties in lung 
adenocarcinoma, similar to that previously shown for lung squamous cell carcinoma1. 

RNA-seq validated mutations are listed in10. 

Expression subtype detection 

Previously validated gene expression subtypes of lung adenocarcinoma11,12 were detected in the 
TCGA lung adenocarcinoma cohort.  Gene expression data were gene median centered.  Using 
previously published predictor centroids12,13 subtype was assigned to each TCGA tumor 
specimen using a nearest centroid predictor13, limiting to the genes common to the predictor 
and the TCGA cohort (n = 489) and using Pearson correlation as the similarity metric, with the 
maximum correlation coefficient providing the subtype prediction for a tumor (subtype calls in 
14).  To empirically assess the quality of these subtype detections similar to earlier studies1,12, 
expression of the predictor genes was compared between the TCGA cohort and the previously 
published Wilkerson et al. cohort (Supplementary Figure 7B).  Subtype expression patterns 
were highly concordant between the cohorts, indicating that the subtypes are a similar 
stratification of the TCGA cohort as in earlier cohorts.   

The subtypes’ names were updated to be consistent with recent changes to morphological 
classification and to reflect distinct expression properties of the subtypes, as follows: Bronchioid 
to Terminal Respiratory Unit (TRU), Magnoid to Proximal-proliferative (PP), and Squamoid to 
Proximal-inflammatory (PI).  Patient overall survival was compared among the subtypes, limited 
to those patients with follow up information and censoring patients having died within 30 days of 
surgery.  The TRU subtype exhibited a superior outcome relative to the other two subtypes 
(Supplementary Figure 7C), consistent with earlier studies11,12. Limiting cases to N0 or N0 and 
N1, TRU continued to have superior outcome. 

 

  



RESULTS 
Supplementary Figure 7A: DNA-WES sequence mutation validation by RNA-seq. 

 



 

Supplementary Figure 7B: Expression subtype detection. 

 



 

Supplementary Figure 7C: Survival outcome of expression subtypes. 
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Supplementary Material: RNA splicing 

METHODS 

BAM files from 230 tumor samples of MapSplice alignments1 were used as input to 
JuncBASE for analysis of alternative splicing2.  Briefly, JuncBASE identifies and 
quantifies alternative splicing using exon-exon junctions present in the BAM files and 
also exon coordinates from annotated or de novo transcript assembly sources. Cufflinks3 
transcript assembly was performed to identify novel exons to use as input for JuncBASE.  
JuncBASE analysis was run with a junction sequence length of 88 and a junction 
entropy cutoff of 2. Reference exon coordinates were derived from UCSC known genes 
hg194.  Further analysis was done on “percent spliced in” values (inclusion isoform 
abundance/total abundance) given by JuncBASE for each of the 29,857 alternative 
splicing event identified in the 230 samples. 

To identify alternative splicing events that were significantly differentially expressed in 
the presence of a U2AF1 S34F mutation, we used a Mann-Whitney test comparing 
“percent spliced in” values between 8 U2AF1 S34F tumors and 222 U2AF1 WT tumors 
(Benjamini-Hochberg correction, FDR < 0.05). We further filtered for stronger effects 
where the difference in median “percent spliced in” values of the U2AF1 WT and U2AF1 
S34F tumors were greater than 10%. 

JuncBASE identified and quantified the skipping of exon 14 of MET in 9/230 samples. 
One tumor sample (TCGA-50-6597) contained an exon 14 splice site mutation; however, 
it had insufficient coverage around exon 14 for JuncBASE quantification. We were able 
to confirm skipping of exon 14 in this sample by the presence of multiple exon-exon 
junction reads spanning exon 13 and exon 15. The ten samples described above were 
the only samples that contained any exon-exon junction reads spanning exon 13 and 
exon 15 of MET. 

 

 

 

 

 

 

 

 

 

 



RESULTS 

Supplementary Figure 8A: Scores for predicted splicing enhancer sequences within (a) 
wild-type MET exon 14 and (b) Y1003* (c.3009C>G) as determined by Human Splicing 
Finder [Human Splicing Finder. Desmet et al. NAR 2009]. Rectangles correspond to the 
splicing enhancer scores using ESE Finder matrices for n-mers. N-mers that score 
above the default threshold values are shown. 
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Supplementary Figure 8B: Increased expression of a CTNNB1 isoform associated with 
U2AF1 S34F tumors. (a) Percent spliced in values of a CTNNB1 3’UTR alternative 3’ 
splice site event shown for U2AF1 WT tumors and U2AF1 S34F tumors. (b) RNA-Seq 
coverage from a representative U2AF1 WT sample and U2AF1 S34F sample of the 
alternatively spliced region (http://genome.ucsc.edu5). The isoform with increased 
expression in U2AF1 S34F samples is indicated with the arrow. 
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Supplementary materials: Oncogene Discovery Analysis 
 
To identify mutations enriched in the subset of tumors lacking canonical lung 
adenocarcinoma mutations, we first defined which tumors lacked canonical driver 
mutations via the following analysis: 
 
Definition of canonical driver mutations: We curated canonical driver genes from two 
sources1, 2. We considered only genes with mutually exclusive mutation patterns 
(excluding PIK3CA). Therefore the genes considered “drivers” were: KRAS, EGFR, 
ERBB2, BRAF, MET, ALK fusion genes, RET fusion genes, ROS1 fusion genes, HRAS, 
NRAS, and MAP2K1. 
 
Next, mutations were filtered to include only those with either evidence of recurrence 
within the COSMIC database3 (>3 independent mutations at the same site) or evidence 
of functional impact (e.g. MAP2K1 p.C121S4 and MET exon 14 deletions5, 6). 
Supplementary Figure 9a displays the mutations identified in each gene and those that 
were considered of known significance (black) or of unknown significance (gray). 
 
After mutation filtering, we considered any sample having a mutation in one of the above 
listed genes listed as belonging to the “oncogene-positive” group (n = 143). Samples 
lacking any of the mutations were considered “oncogene-negative” (n = 87). 
Supplementary Table 7 shows the oncogene-positive or negative classification for each 
sample as well as mutation status for the oncogenes listed above. 
 
We identified new candidate mutually exclusive mutated “driver” genes by applying a 
Fisher’s exact test p-value for the difference in percentage of samples mutated in that 
gene between the “oncogene-negative” vs. “oncogene-positive” sample sets. These p-
values were then corrected using the Benjamini-Hochberg multiple test correction 
method. See Supplementary Table 12 for the ranked list. 
 
To identify novel mutually exclusive somatic copy number alterations, GISTIC analysis 
was performed on the “oncogene-positive” and “oncogene-negative” subsets as defined 
above and significant focal amplification peaks compared between the two, revealing 
MET and ERBB2 amplification peaks as specific to the oncogene-negative subset 
(Figure 3b). While moderate amplification of MET and ERBB2 sometimes co-occurred 
with other somatic driver events (Supplementary Table 7), amplifications with 
accompanying high-level overexpression (RNASeq V2 RSEM z-score > 10) of MET or 
ERBB2 were mutually exclusive with other driver events (Figure 3C). 
 
RESULTS 
 
Supplementary Figure 9 – Oncogene definition and nonsilent mutation rate, purity 
and ploidy between oncogene-positive and oncogene-negative tumors. a, 
Schematics of known driver oncogenes showing nonsilent somatic variants observed in 
this dataset. Each lollipop indicates a different somatic variant. Black, variants of known 
significance as described above. Gray, variants of unknown significance excluded from 
the “oncogene-positive” classification. b, No significant differences were observed in 
ABSOLUTE purity or ploidy between oncogene-positive and oncogene-negative tumors 
(p > 0.05; Wilcoxon rank-sum test). Oncogene-negative tumors did however exhibit a 
higher overall mutation rate (p < 0.001). See Figure 3 in the main text for a description of 
alterations identified in oncogene-positive or -negative groups.  
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Supplementary Material: Reverse Phase Protein Array Data 

METHODS 

Protein lysate was prepared and analyzed by reverse phase protein array (RPPA) as previously 
described [1-5].  Briefly, protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 
nmol/L Hepes (pH 7.4), 150 nmol/L NaCl, 1.5 nmol/L MgCl2, 1 mmol/L EGTA, 100 nmol/L NaF, 
10 nmol/L NaPPi, 10% glycerol, 1 nmol/L phenylmethylsulfonyl fluoride, 1 nmol/L Na3VO4, and 
aprotinin 10 Ag/mL) from human tumors and RPPA was performed. Lysis buffer was used to 
lyse frozen tumors by Precellys homogenization. Tumor lysates were adjusted to 1 µg/µL 
concentration and boiled with 1% SDS. Tumor lysates were manually diluted in five-fold serial 
dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 
samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides were probed with 160 primary 
antibodies (Supplementary Table 13) followed by corresponding secondary antibodies (Goat 
anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). Signal was captured using a 
DakoCytomation-catalyzed system and DAB colorimetric reaction. Spot intensities were 
analyzed and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA), to 
generate spot signal intensities (Level 1 data). The software SuperCurveGUI[3,5], available at 
http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 
values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") 
was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each 
protein on the X-axis using the non-parametric, monotone increasing B-spline model[1]. During 
the process, the raw spot intensity data were adjusted to correct spatial bias before model 
fitting. A QC metric[5] was returned for each slide to help determine the quality of the slide: if the 
score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was 
repeated to obtain a high quality score. If more than one slide was stained for an antibody, the 
slide with the highest QC score was used for analysis (Level 2 data). Protein measurements 
were corrected for loading as described[3,5,6] using median centering across antibodies (level 3 
data). In total, 160 antibodies and 237 samples were used (183 of which were represented in 
the core sample set). Final selection of antibodies was also driven by the availability of high 
quality antibodies that consistently pass a strict validation process as previously described[7]. 
These antibodies are assessed for specificity, quantification and sensitivity (dynamic range) in 
their application for protein extracts from cultured cells or tumor tissue. Antibodies are labeled 
as validated and use with caution based on degree of validation by criteria previously 
described[7]. Raw data (level 1), SuperCurve nonparameteric model fitting on a single array 
(level 2), and loading corrected data (level 3) were deposited at the DCC. 

Lung adenocarcinoma samples were examined for mTOR pathway signature, defined as the 
average of phosphoprotein levels of S6K, S6 and 4EBP1 (all proteins levels being first 
normalized to standard deviations from the median across tumors). Tumors were sorted into five 
groups: first by PIK3CA activating mutation (E453Q, E542K, E545K, and H1047R), then by 
STK11 inactivating (nonsilent) mutation, then by high p-AKT levels (normalized levels of Akt-
pS473>0.5), then by low combined LKB1/p-AMPK protein levels (average normalized levels of 
[LKB1+AMPK-pT172]<-0.5), and then by tumors not falling into any of the above groups. mTOR 
pathway signature scores for tumors in each of the first four groups were compared with those 
of the unaligned group (using two-sided t-test).  Lung adenocarcinoma samples were then 



	  

examined for activation of the MAPK pathway, calculated by taking the average of 
phosphorylated pathway proteins (JNK, MAPK, MEK1, p38, p90RSK, Shc, and cRaf) and total 
levels of ERK2, GAB2, KRAS, and JNK2.  Tumors were then sorted based on KRAS mutation 
status and MAPK pathway protein score.   

RESULTS 

Supplementary Figure 10.  Lung adenocarcinoma samples were examined for activation of the 
(A&B) MAPK pathway and expression of (C) cell cycle proteins. (A) A MAPK pathway protein 
score was calculated by taking the average of phosphorylated pathway proteins (JNK, MAPK, 
MEK1, p38, p90RSK, Shc, and cRaf) and total levels of ERK2, GAB2, KRAS, and JNK2.  
Tumors were then sorted based on MAPK pathway protein score.  KRAS mutant tumors had 
higher MAPK pathway protein score (p=0.003 by t-test), while tumors with TP53 or Met 
mutations had lower MAPK protein scores (p=0.003 and 0.011, respectively). (B) Tumors 
harboring activating KRAS mutations are enriched for higher MAPK pathway signature score, as 
compared to oncogene negative tumors (P<0.01, two-sided t-test). Proteins represented in 
MAPK score include JNK, MAPK, MEK1, p38, p90RSK, Shc, and c-Raf. Box plots represent 
5%, 25%, 75%, median, and 95%. (C) The proteomic cell cycle score was calculated by taking 
the average protein expression of cell cycle proteins shown in the figure.  A cell cycle mRNA 
score was computed by taking the average of the normalized expression values (standard 
deviations from the median across samples), for genes previously found correlated with cell 
cycle progression[8].	   	  mRNA subtypes and an mRNA-based cell cycle score were significantly 
associated with protein scores, with p19del subgroup (red) having higher cell cycle scores and T 
subgroup (black) having higher MAPK scores.   
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Supplementary Figure 11.  KEAP1 mutated samples had significantly lower expression of 
KEAP1 protein (p=0.002) and higher NRF2 protein (p<0.001), which is normally targeted for 
proteasomal degradation by KEAP1.  Differences in protein expression between wildtype and 
mutated samples assessed by t-test. 
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Supplementary Material: microRNA sequencing analysis 

METHODS 

MicroRNA sequence (miRNA-seq) data were generated using reported methods1 for 230 
tumor samples and 32 matched tissue normals. Unsupervised non-negative matrix 
factorization (NMF) consensus clustering was done as reported.1 For the 32 miRNAs 
that were most discriminatory (i.e. had scores above the 95th percentile in each of the 
five NMF metagenes),2,3 normalized (reads per million, RPM) abundance profiles were 
log2-transformed and mean-centred, then were hierarchically clustered with Cluster 3.0 
(bonsai.hgc.jp/~mdehoon/software/cluster/), using an absolute centered correlation and 
average linkage. The resulting heatmap, with tumor samples in NMF order, was 
visualized with Java TreeView (jtreeview.sourceforge.net/). Differentially abundant 5p/3p 
strands for miRBase v16 annotations were identified with two-group exact tests, using 
edgeR4 v3.2.1 and R v3.0.0. The calculation was done first for the 32 matched tumor-
normal pairs, then for each unsupervised tumor group, using all 230 tumors and the 32 
matched normals. These calculations used read-count input matrices, TMM 
normalization and tagwise dispersions, and assigned Benjamini-Hochberg-corrected P-
values. 5p and 3p strand names were assigned using miRBase v19. Purity and ploidy 
were reported by ABSOLUTE.5 

RESULTS 

Cophenetic and silhouette profiles for unsupervised consensus NMF clustering 
suggested a five-group solution (Supplementary figure 12). Technical covariates, i.e. 
tissue source sites, Biospecimen Core Resource (BCR) batches, sequencing platforms, 
and reads aligned to miRBase annotations were consistent with the data having no 
strong technical biases.  

miRNAs that were differentially abundant between the 32 matched tumor/adjacent 
normal samples were consistent with those reported in a recent meta-analysis that 
considered data from 598 tumor and 528 control samples across 20 studies.6 
Differentially abundant miRNAs included six of the seven upregulated miRNAs from that 
work (miR-21, Benjamini-Hochberg-corrected P=1.1e-8; miR-210, 2.7e-20; miR-182, 
1.3e-12; miR-31, 5.6e-6; miR-200b, 1.2e-6; miR-205, 3.3e-4) and all eight 
downregulated miRNAs (miR-126-3p, P=3.6e-5; miR-30a, 4.0e-18; miR-30d, 1.1e04; 
miR-486-5p, 2.5e-22; miR-451a, 1.4e-10; miR-126-5p, 3.6e-5; miR-143, 5.2e-8; and 
miR-145, 1.2e-7). (Underlined miRNAs were included in the 32 most discriminatory from 
NMF clustering, Supplemental figure 12d.) 

miRNAs that were differentially abundant between samples in each unsupervised group, 
compared to all other tumor samples and the 32 matched adjacent normal samples as a 
single ‘other’ group, were consistent with those reported for lung and other cancers (data 
not shown). These included miR-372, which was relatively abundant in group 2, and has 
been reported for hepatocellular7 and gastric8 cancers, and assessed with proteomic 
profiling in a lung cancer cell line.9 miR-381 was relatively abundant in group 3, and has 



been reported for lung adenocarcinoma.10 In this group, the most upregulated miRNAs 
include members of the miRNA-379/656 cluster that is within the imprinted DLK-DIO3 
region on chromosome 14.11 miR-196b and miR-9 were relatively abundant in group 5. 
The former has been associated with proliferation and invasion in non-small cell lung 
cancer12 and reported from a zonal profiling study in squamous lung cancer.13 The latter 
is MYC/MYCN-activated and regulates E-cadherin.14 

	  



 
Supplementary Figure 12: Unsupervised NMF consensus clustering of miRNA-seq 5p/3p RPM abundance 
data for 230 tumor samples. a) Schematic of a miRNA primary transcript (pri), the trimmed pre-miRNA (pre), 
reference miRBase 5p and 3p strands, and 5’ and 3’ isomiR variation. The gray triangle indicates the 5p/3p-
strand data representation used. b) Scatterplot of mean RPM vs. RPM variance, showing the expected 
overdispersion4 relative to the red line, whose slope is 1. The horizontal dashed green line shows the 75th 
percentile of variance in normalized abundance (RPM). The input to NMF was an RPM abundance matrix 
for the 304 5p and 3p strands with variances above this threshold. c) Above: The rank survey silhouette 
width profile was more informative than the cophenetic correlation coefficient profile, and suggested a five-
group solution. Below: Heatmap of consensus membership values for the five-group solution. d) Normalized 
log2 abundance of the 32 most discriminatory miRNAs. Beneath the heatmap is a profile of silhouette width. 
A sample that is a good fit in a dense, distinct group will have a high silhouette value. Beneath the profile is 
a track showing ‘atypical’ samples, defined as those with silhouette widths below 0.9 of the maximum in a 
group. Beneath this is a profile of purity, then tracks showing tissue source sites, BCR batches, and GAIIx 
and HiSeq sequencing platforms. e) Summary table showing group numbers, the number of tumor samples 
in each group, and the average silhouette width r each group. f) Distributions of the number of post-filter 
reads aligned to miRBase v16 annotations, and the number of miRNA annotations with at least 10 aligned 
reads. g) Sample purity and h) ploidy. Upper: distribution function. Lower: distributions in each group, with a 
table of median values. 
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Supplementary Figure 13.  Unsupervised clustering of reverse phase protein array data by NMF clustering.  
NMF clustering was applied to the reverse phase protein array data, identifying 6 subgroups of tumors with 
distinct protein expression patterns, using the methods described in the miRNA-seq supplemental section.  
RPPA subgroups were significantly associated with subtypes identified in independent data types (ex., 
mRNA and iCluster subtypes), histology, and TTF1 expression levels (low/high) (by ANOVA).  The top 50 
protein markers differentially expressed between RPPA groups are shown.   

p=0.0005 
p<0.0001 
p=0.0005 
p=0.0005 



REFERENCES: 

1.  Cancer Genome Atlas Network. Comprehensive molecular portraits of human 
breast tumors. Nature 490, 61-70 (2012).  

2.  Gaujoux, R. and Seoighe, C. A flexible R package for nonnegative matrix 
factorization. BMC Bioinformatics 11, 367 (2010). 

3.  Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool 
in computational biology. PLoS Comput Biol. 4:e1000029 (2008). 

4.  Robinson, M.D. et al.  edgeR: a Bioconductor package for differential expression 
analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). 

5.  Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human 
cancer. Nature Biotechnology 30, 413-21 (2012). 

6.  Võsa, U., et al. Meta-analysis of microRNA expression in lung cancer. 
International Journal of Cancer 132, 2884-2893 (2013). 

7.  Gu, H., et al. Upregulation of microRNA-372 associates with tumor progression 
and prognosis in hepatocellular carcinoma. Molecular and Cellular Biochemistry 
375, 23-30 (2013). 

8.  Zhou, C., et al. microRNA-372 maintains oncogene characteristics by targeting 
TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells. 
International Journal of Oncology 42, 635-642 (2013). 

9. Lai, J.H., et al. Comparative proteomic profiling of human lung adenocarcinoma 
cells (CL 1-0) expressing miR-372. Electrophoresis 33, 675-688 (2012).  

10.  Rothschild, S.I. et al. MicroRNA-381 represses ID1 and is deregulated in lung 
adenocarcinoma. Journal of Thoracic Oncology 7, 1069-1077 (2012). 

11.  Glazov, E.A. et al. Origin, evolution, and biological role of miRNA cluster in DLK-
DIO3 genomic region in placental mammals. Molecular Biology and Evolution 25, 
939-948 (2008). 

12.  Liu, X.H. et al. MicroRNA-196a promotes non-small cell lung cancer cell 
proliferation and invasion through targeting HOXA5. BMC Cancer 12, 348 (2012). 

13.  Wu, H. et al. Tumor-microenvironment interactions studied by zonal 
transcriptional profiling of squamous cell lung carcinoma. Genes Chromosomes 
Cancer 52, 250-264 (2013). 

14.  Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and 
cancer metastasis. Nature Cell Biology 12, 247-256 (2010). 

	  



DNA Methylation Supplementary Material  
METHODS 

Sample preparation and hybridization 
Two high-throughput DNA platforms were used for TCGA LUAD samples. The Infinium 
HM450 [1] assay probe set includes probes for more than 480,000 CpG sites, spanning 
99% of RefSeq.  In total, 96% of CpG islands and 92%  of CpG shores are represented 
by at least one probe.  This array is an expansion of the Illumina Infinium HM27 array 
[2], which interrogates 27,578 CpG dinucleotides spanning 14,495 unique gene regions, 
heavily concentrated near CpG islands.  Sample preparation and hybridization protocols 
are identical for the two platforms, the crucial difference being that the Infinium HM27 
array exclusively uses the Type-I chemistry described below, while the Infinium HM450 
array employs both Type-I and Type-II chemistries for different CpG loci.  [1] 
Genomic DNA (1000 ng) for each sample was treated with sodium bisulfite, recovered 
using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA) according to the 
manufacturer’s specifications and eluted in 18 ul volume. An aliquot (3 ul) is removed for 
MethyLight-based quality control testing of bisulfite conversion completeness and the 
amount of bisulfite converted DNA available for the Infinium DNA Methylation assay as 
described in [3]. All TCGA DNA samples passed quality control and proceeded to the 
Infinium DNA methylation assay. Each bisulfite-converted DNA sample was whole 
genome amplified (WGA) followed by enzymatic fragmentation as specified by the 
manufacturer.  The bisulfite-converted, fragmented WGA-DNA samples were then 
hybridized overnight to a 12 sample BeadChip.  During this hybridization, the WGA-DNA 
molecules anneal to methylation-specific DNA oligomers linked to individual bead types, 
with each bead type corresponding to a specific DNA CpG site and methylation state.  
The oligomer probe designs follow the Infinium I and II chemistries, in which locus-
specific base extension follows hybridization to a methylation-specific oligomer. There 
are two different bead types for each locus, one with an oligomer that anneals 
specifically to the methylated version of the locus, while the other oligomer anneals to 
the unmethylated version of the locus.  The Infinium I probes terminate complementary 
to the interrogated CpG site for methylated loci, or complementary to the TpG for 
unmethylated alleles.  A matched oligomer-template DNA molecule hybrid will allow for 
the incorporation of a labeled nucleotide immediately adjacent to the interrogated CpG 
(or TpG) site.  However, if the probe and template are mismatched, then primer 
extension will not occur.  Adenine and thymine nucleotides are labeled with cy5 (red), 
while cytosine nucleotides are labeled with cy3 (green). No insertion of guanine 
nucleotides occurs in Inifnium I assays. Of note, the identity of the dye is representative 
of the nucleotide adjacent to the CpG dinucleotide. The methylation discrimination is 
derived from separate measurements from the two different types of beads present for 
each locus.  For some loci, both measurements will be cy3, and for others both will be 
cy5. The Infinium type II chemistry is a true two-color system. A matched oligomer-
template DNA molecule hybrid will allow for the incorporation of a labeled nucleotide 
immediately 3’ to the interrogated CpG (or TpG) site. Adenine nucleotides labeled with 
cy5 (red) are incorporated at unmethylated (TpG) sites, while guanine nucleotides 
labeled with cy3 (green) are incorporated at methylated (CpG) sites.  The intensities of 
both cy3 and cy5 are obtained after scanning each hybridized array. BeadArrays are 
scanned and the raw data are imported into custom programs in R computing language 
for pre-processing and calculation of beta value DNA methylation scores for each probe 
and sample.   
In addition, CDKN2A (p16) promoter methylation was measured in TCGA LUAD 
samples from batches 34, 37, 52 and 58 using the MethyLight assay [4] with assay 
primers and probe for CDKN2A (CDKN2A-M2; HB-081) as described previously [5]. 



MethyLight data are reported as a ratio between the value derived from the real-time 
PCR standard curve plotted as log (quantity) versus threshold C(t) value for the 
CDKN2A DNA methylation reaction and likewise for a methylation-independent control 
reaction (ALU).  M.SssI-treated genomic DNA is used as a reference sample to 
determine this ratio and to derive the standard curve.  From these measurements, the 
Percent of Methylated Reference (PMR) is calculated as 100*(CDKN2A-M2 methylated 
reaction / ALU control reaction)sample / (CDKN2A-M2 methylated reaction / ALU control 
reaction)M.SssI-Reference, in which the CDKN2A-M2 methylated reaction refers to the DNA 
methylation measurement at the CDKN2A promoter and the ALU control reaction refers 
to the methylation-independent measurement using a control reaction based on ALU 
repetitive elements [6]. 
 
Data Processing 
For both platforms, raw image files were imported into the R (http://www.r-project.org) for 
pre-processing and calculation of beta value DNA methylation scores, using the 
methylumi Bioconductor package [7].  Pre-processing steps include background 
correction, dye-bias normalization, and calculation of beta values and detection p-
values.   
Analysis 
Primary analyses including clustering to identify subtypes, comparison to other data 
types, and most gene specific DNA methylation estimates were confined to the clear 
majority of data freeze samples (181/230=79%) that were hybridized to the HM450 
platform.   
Clustering Analysis 
DNA methylation clusters were based on CpG sites meeting the following criteria: 

1) probes must be within CpG islands 
2) they must be within 1500 bases of the transcription start site or in the 5’ UTR of a 

gene 
3) sample to sample variation must be in the top 1% of all probes.  

Consensus clustering as implemented in the Bioconductor package 
ConsensusClusterPlus [8], with Euclidean distance and partitioning around medoids 
(pam) was used to derive clusters.  
Additional Analyses 
Student’s t-tests were used to test for association between mutations and DNA 
methylation patterns and Fisher’s exact test to test for associations between methylation 
subtype and other molecular factors including mRNA, miRNA and iCluster subtypes. 
Correlation between DNA methylation and expression were evaluated by Spearman 
correlation. Gene specific methylation for CDKN2A, RASSF1, RASAL1 and PITX1 was 
determined by selecting a probe for each gene on the basis of position respective of 
CpG islands and gene promoters as well as inverse correlation to expression. 
  



RESULTS 
 

Correlative analysis of DNA methylation subtypes. 
DNA methylation is just one of many factors regulating mRNA expression, but in the 
genes used to define the CIMP phenotype, expression tends to be inversely correlated 
to DNA methylation levels, with the lowest expression seen in CIMP-H samples 
(Supplementary Figure 14A).  
  A number of chromatin remodeling genes with frequent somatic mutations in 
TCGA samples were evaluated as possible drivers of the CIMP phenotype. These are 
shown in Supplementary Figure 14B, along with any copy number alterations identified 
in the same genes.  No statistically significant correlations were identified.  

Sample cluster assignments based on mRNA, miRNA and icluster analyses were 
mapped to the DNA methylation clusters, as are two individual molecular features, P16 
methylation and c-MYC expression, all of which are significantly associated with CIMP. 
The CIMP-H samples have higher mutation counts than the other methylation groups, 
and tend to have slightly higher cellularity as well.  Gene set analysis revealed a general 
increase in the expression of DNA repair genes in CIMP-H tumors compared to the rest 
(p-value =0.003) suggesting that the machinery is at work, if not working effectively. 
There do not appear to be significant differences in the number of CNAs. 
 
Supplementary Figure 14. Correlative analysis of DNA methylation subtypes. 
Panel A) Expression of CIMP genes.  Expression levels are shown for the highly 
variable CpG island probes used to define the CIMP phenotypes in Figure 4B.  Three 
expression levels are shown for each gene, the most highly expressed 25% of samples 
in red, and the least highly expressed 25% in green with intermediate samples in white. 
 Panel B) Frequently mutated chromatin remodeling genes.  A number of chromatin 
remodeling genes with frequent somatic mutations in TCGA samples are shown, along 
with any copy number alterations identified in the same genes.   Panel C) Correlation 
to other subtypes. Sample cluster assignments based on mRNA, miRNA and icluster 
analyses are mapped to the DNA methylation clusters for ready reference, as are two 
individual molecular features, P16 methylation and c-MYC expression. Panel D) 
Additional correlates to CIMP-H. The CIMP-H samples have higher mutation counts 
than the other methylation groups, and tend to have slightly higher purity as well.  There 
do not appear to be significant differences in the number of CNAs. 
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Supplemental material: iCluster analysis 
 
Data processing  

Data processing methods are similar to those described in [1] and are briefly described here. 
Copy number segmented data (germline CNV removed) based on Affymetrix SNP 6.0 array was 
used. Dimension reduction was performed to obtain non-redundant copy number regions as 
described in [1,2]. For mRNA-seq gene expression data, median absolute deviation was used to 
select the top 4,000 most variable genes to include for integrative clustering. For methylation data, 
we combined HumanMethylation27 and HumanMethylation450 platforms by taking the common 
probe set. Median absolute deviation was calculated on the beta values and used to select the 
top 4,000 most variable CpG sites to include for integrative clustering.  

Integrative clustering using iCluster 

Integrative clustering of DNA copy number, DNA methylation, and mRNA expression data was 
performed using iCluster+ [2-4]. The analysis is formulated as a joint multivariate regression of 
multiple data types with respect to a set of common latent variables that represent the underlying 
tumor subtypes. A penalized likelihood approach was used for parameter estimation. A Monte 
Carlo Newton–Raphson algorithm was implemented for maximizing the penalized log-likelihood. 

Model selection 

The number of clusters (K) is unknown and needs to be estimated.  We compute a deviance ratio 
metric which can be interpreted as the percentage of variation explained by the current model, 
and K is chosen to maximize the deviance ratio. To determine the optimal combination of the 
penalty parameter values, a very large search space needs to be covered. We used an efficient 
sampling method that utilizes the uniform design (UD) [5]. At a given K, we determine the penalty 
parameter vector that minimizes a Bayesian information criterion. A theoretical advantage of the 
uniform design over an exhaustive grid search is the uniform space filling property that avoides 
wasteful computation at close-by points.  

Gene-centric identification of concordant copy number and expression alterations 

Following a similar method proposed in [2], we performed a gene-centric integration per each 
cluster to highlight the copy number associated gene expression changes. For each gene, we 
applied independent two-sample t-tests  on its copy number and on its mRNA expression 
between patient samples in cluster k versus the rest. We then use Fisher's method to combine the 
p-values as (log log )cn expP P− +2  which has a χ 2  distribution under the null with 2 degrees of 

freedom. A large χ 2  statistic (indicated by a black verticle line along chromosomal positions in 
Figure S15D) provides strong evidence for concordant events at that location. 

Results: 

Supplementary Figure 15 – Integrative Clustering. Integrative clustering of DNA copy number, 
DNA methylation, and mRNA expression using iCluster+ reveals six distinct molecular subgroups 
among the 230 lung adenocarcinomas and highlights significant interactions between molecular 
subtypes (A-C). Fisher’s combined probability tests highlight significant copy number associated 
gene expression changes on 3q in cluster 1, 8q in cluster 2, chromosome 7 and 15q in cluster 3, 
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